the phosphate atom $\mathrm{O}(2)$ and the second $[\mathrm{H}(7)]$ water atom is used in weak bifurcated hydrogen bonds.

## References

Einspahr, H. \& Bugg, C. E. (1980). Acta Cryst. B36, 264 271.

Sheldrick, G. M. (1976). SHELX76. Program for crystal structure determination. Univ. of Cambridge, England.
Weichsel, A. \& Lis, T. (1990). Acta Cryst. C46, 962-965.
Weichsel, A. \& Lis, T. (1991). In preparation. R.P. 10.

Acta Cryst. (1991). C47, 1600-1602

# Synthesis and Structure of $\left[P\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)_{4}\right]_{4}\left[M_{2}\left(\mathrm{WSe}_{4}\right)_{4}\right](M=\mathbf{P b}, \mathbf{S n})$ 

By Ying-Jie Lu and James A. Ibers<br>Department of Chemistry, Northwestern University, Evanston, IL 60208, USA

(Received 28 August 1990; accepted 4 January 1991)


#### Abstract

Tetrakis(tetraphenylphosphonium) bis( $\mu$ -tetraselenidotungstato-Se, $\left.S e^{\prime}, \mu-S e^{\prime \prime}\right)$-bis[(tetra- selenidotungstato- $\mathrm{Se}, \mathrm{Se} e^{\prime}$ )plumbate], $M_{r}=3770 \cdot 7$, triclinic, $\quad P \overline{1}, \quad a=12.963(1), \quad b=14.430(2), \quad c=$ $14.705(1) \AA, \quad \alpha=105.26(1), \quad \beta=99.88(1), \quad \gamma=$ $94.06(1)^{\circ}, V=2595(1) \AA^{3}, Z=1, D_{x}=2.40 \mathrm{~g} \mathrm{~cm}^{-3}$, $\lambda\left(\mathrm{Cu} K \alpha_{1}\right)=1.54056 \AA, \mu=218.0 \mathrm{~cm}^{-1}, \quad F(000)=$ 1673.5 (including anomalous dispersion), $T=153 \mathrm{~K}$, $R\left[\right.$ on $F$ for $\left.F_{o}^{2}>3 \sigma\left(F_{o}^{2}\right)\right]=0.047, w R\left[\right.$ on $F$ for $F_{o}^{2}>$ $\left.3 \sigma\left(F_{o}^{2}\right)\right]=0.048, R\left(F^{2}\right)=0.075, w R\left(F^{2}\right)=0.101$ for 10498 unique reflections, 7747 having $F_{o}^{2}>3 \sigma\left(F_{o}^{2}\right)$. The centrosymmetric $\left[\mathrm{Pb}_{2}\left(\mathrm{WSe}_{4}\right)_{4}\right]^{4-}$ ion is composed of two independent W atoms tetrahedrally coordinated by Se atoms and one independent Pb atom in a distorted octahedral coordination of Se atoms. Tetrakis(tetraphenylphosphonium) bis( $\mu$-tetraselenidotungstato- $S e, S e^{\prime}, \mu$ - $S e^{\prime \prime}$ )-bis [(tetra-selenidotungstato- $\mathrm{Se}, \mathrm{Se} e^{\prime}$ stannate $], \quad\left[\mathrm{PPh}_{4}\right]_{4}\left[\mathrm{Sn}_{2}-\right.$ $\left.\left(\mathrm{WSe}_{4}\right)_{4}\right]$, is isostructural with $\left[\mathrm{PPh}_{4}\right]_{4}\left[\left[\mathrm{~Pb}_{2}\left(\mathrm{WSe}_{4}\right)_{4}\right]\right.$, $M_{r}=3593.7, \quad$ triclinic, $\quad P \overline{1}, \quad a=12.981(3), \quad b=$ 14.412 (6), $\quad c=14.644$ (7) $\AA, \quad \alpha=105.26$ (4),$\quad \beta=$ 99.79 (3) $, \gamma=94.56(3)^{\circ}, V=2583(1) \AA^{3}, Z=1, D_{x}$ $=2.31 \mathrm{~g} \mathrm{~cm}^{-1}, \lambda\left(\mathrm{Cu} K \alpha_{1}\right)=1.54056 \AA, T=153 \mathrm{~K}$.


Introduction. The reaction of various divalent metal cations with the tetrathiometallates $\mathrm{MoS}_{4}^{2-}$ or $\mathrm{WS}_{4}^{2-}$ affords the bis(thiometallate) anions $\left[M^{\prime}\left(M S_{4}\right)_{2}\right]^{2-}$ ( $M^{\prime}=\mathrm{Fe}, \mathrm{Co}, \mathrm{Ni}, \mathrm{Pd}, \mathrm{Zn}$, etc., $M=\mathrm{Mo}, \mathrm{W}$ ) (Müller, Diemann, Jostes \& Bögge, 1981). In contrast, the reaction of $\mathrm{Sn}^{2+}$ with $\mathrm{WS}_{4}^{2-}$ affords $\left[\mathrm{Sn}_{2}\left(\mathrm{WS}_{4}\right)_{4}\right]^{4-}$ (Müller, Paulat-Böschen, Krebs \& Dornfeld, 1976).

Until quite recently, little related chemistry of the $\mathrm{MoSe}_{4}^{2-}$ and $\mathrm{WSe}_{4}^{2-}$ ions was known (Ansari \& Ibers, 1990). It was recently found that reaction of $\mathrm{WSe}_{4}^{2-}$ with $\mathrm{Ni}^{2+}$ affords not only $\left[\mathrm{Ni}\left(\mathrm{WSe}_{4}\right)_{2}\right]^{2-}$ \{analogous to $\left[\mathrm{Ni}\left(\mathrm{WS}_{4}\right)_{2}\right]^{2-}$ \} but also $\left[\mathrm{Ni}\left(\mathrm{Se}_{2}\right)-\right.$

0108-2701/91/081600-03\$03.00
$\left.\left(\mathrm{WSe}_{4}\right)\right]^{2-}$ for which there is no known sulfur analogue (Ansari, Chau, Mahler \& Ibers, 1989). Thus the chemistry of the soluble selenides need not parallel that of the sulfides. In the present study, the reactions of $\mathrm{Pb}^{2+}$ and $\mathrm{Sn}^{2+}$ with $\mathrm{WSe}_{4}^{2-}$ were investigated. These reactions afford the $\left[M_{2}\left(\mathrm{WSe}_{4}\right)_{4}\right]^{4-}(M=\mathrm{Pb}, \mathrm{Sn})$ species.

Experimental. All reactions were carried out under a dry dinitrogen atmosphere with the use of standard Schlenk techniques. Solvents were dried and distilled before use. $\left[\mathrm{PPh}_{4}\right]_{4}\left[M_{2}\left(\mathrm{WSe}_{4}\right)_{4}\right](M=\mathrm{Pb}, \mathrm{Sn})$ was prepared by the reaction in DMF of $\mathrm{PbCl}_{2}$ or $\mathrm{SnCl}_{2}$ with $\left[\mathrm{NH}_{4}\right]_{2}\left[\mathrm{WSe}_{4}\right]$ in the presence of $\left[\mathrm{PPh}_{4}\right] \mathrm{Br}$. The ${ }^{77} \mathrm{Se}$ NMR spectrum of a DMF solution of the Pb complex exhibits resonances at $\delta 1653,1563,964$, 938 and 894 (relative to $\mathrm{Me}_{2} \mathrm{Se}$ at $\delta 0$ ). These may be assigned to terminal W-Se at $\delta 1653$ and 1563 and bridging W-Se at $\delta 964,938$ and 894 (Wardle, Mahler, Chau \& Ibers, 1988). Such an assignment is consistent with a structure for an anion analogous to that of $\left[\mathrm{Sn}_{2}\left(\mathrm{WS}_{4}\right)_{4}\right]^{4-}$.

A tabular crystal $0.081 \times 0.139 \times 0.061 \mathrm{~mm}$ was mounted in the cold stream $(T=153 \mathrm{~K})$ of an Enraf-Nonius CAD-4 diffractometer. Cell constants were obtained from 23 reflections in the range $25<$ $\theta\left(\mathrm{Cu} K \alpha_{1}\right)<26^{\circ}$. Intensity data were collected by the $\omega-2 \theta$ technique in the range $3 \leq \theta\left(\mathrm{Cu} K \alpha_{1}\right) \leq 75^{\circ}$ $(-16 \leq h \leq 0,-18 \leq k \leq 18,-18 \leq l \leq 18)$. The basic scan speed was $4^{\circ} \mathrm{min}^{-1}$ in $\omega$ but reflections having ${F_{o}}^{2}<3 \sigma\left(F_{o}^{2}\right)$ were scanned more slowly up to a maximum time of 60 s . The scan range was $0.5^{\circ}$ in $\omega$ below $K \alpha_{1}$ to $0.5^{\circ}$ in $\omega$ above $K \alpha_{2}$. Six standards ( $08 \overline{1}, 0 \overline{8} 1, \overline{6} \overline{4} 3, \overline{3} 08, \overline{6} 00, \overline{1} 01$ ) chosen from diverse regions of reciprocal space were monitored every 3 h during data collection and remained constant within
© 1991 International Union of Crystallography

Table 1. Final atomic coordinates and equivalent isotropic thermal parameters for $\left[\mathrm{PPh}_{4}\right]_{4}\left[\mathrm{~Pb}_{2}\left(\mathrm{WSe}_{4}\right)_{4}\right]$

| $B_{\text {eq }}=\left(8 \pi^{2} / 3\right) \sum_{i} \sum_{j} U_{i} a_{i}^{*} a_{i}{ }^{*} \mathbf{a}_{i} \cdot \mathbf{a}_{j}$. |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
|  | $x$ | $y$ | $z$ | $B_{\text {cq }}\left(\AA^{2}\right)$ |
| Pb | 0.148114 (35) | 0.085562 (29) | $0 \cdot 118175$ (29) | 2.00 (1) |
| W(1) | 0.364729 (38) | 0.227204 (32) | 0.311431 (32) | 1.72 (1) |
| W(2) | 0.017196 (37) | -0.165498 (31) | 0.087057 (31) | 1.51 (1) |
| $\mathrm{Se}(1)$ | 0.471861 (98) | 0.354614 (82) | 0.299786 (86) | 2.45 (3) |
| $\mathrm{Se}(2)$ | 0.41091 (11) | 0.209509 (92) | 0.462742 (84) | 2.73 (3) |
| $\mathrm{Se}(3)$ | $0 \cdot 188427$ (91) | 0.256783 (78) | 0.281940 (80) | $2 \cdot 12$ (3) |
| $\mathrm{Se}(4)$ | 0.374230 (98) | 0.085846 (79) | 0.190823 (82) | $2 \cdot 30$ (3) |
| $\mathrm{Se}(5)$ | 0.085657 (88) | -0.116824 (75) | -0.032983 (74) | 1.88 (3) |
| $\mathrm{Se}(6)$ | 0.07098 (10) | -0.041569 (80) | 0.229202 (77) | $2 \cdot 33$ (3) |
| $\mathrm{Se}(7)$ | -0.165612 (88) | -0.188081 (79) | 0.041734 (79) | 2.01 (3) |
| $\mathrm{Se}(8)$ | 0.076881 (95) | -0.305418 (78) | $0 \cdot 106979$ (86) | $2 \cdot 30$ (3) |
| $\mathrm{P}(1)$ | -0.28710 (20) | -0.54648 (17) | 0.08167 (17) | 1.38 (6) |
| $\mathbf{P}(2)$ | 0.80568 (22) | 0.22455 (20) | 0.49251 (18) | 1.90 (7) |
| C(1) | -0.16790(80) | -0.55550 (72) | 0.16066 (62) | 1.7 (2) |
| C(2) | -0.14460 (89) | -0.64560 (77) | 0.17363 (80) | $2 \cdot 3$ (3) |
| C(3) | -0.05373 (91) | -0.64739 (85) | 0.23842 (76) | $2 \cdot 6$ (3) |
| C(4) | 0.01083 (84) | -0.56457 (87) | 0.28964 (73) | 2.5 (3) |
| C(5) | -0.0141 (13) | -0.47517 (95) | 0.27802 (87) | 2.0 (4) |
| C(6) | -0.10240 (78) | -0.46981 (73) | 0.21337 (76) | 1.9 (3) |
| C(7) | -0.26298(76) | -0.51747 (59) | -0.02313 (62) | 1.7 (2) |
| C(8) | -0.34153 (77) | -0.54596 (72) | -0.10551 (72) | 1.9 (3) |
| C(9) | -0.32550 (95) | -0.52200 (85) | -0.18747 (74) | $2 \cdot 8$ (3) |
| $\mathrm{C}(10)$ | -0.2330 (10) | -0.46877 (80) | -0.18770 (83) | $2 \cdot 8$ (3) |
| C(11) | -0.15541 (97) | -0.43971 (83) | -0.10807 (82) | $2 \cdot 6$ (3) |
| C(12) | -0.16840 (90) | -0.46479 (71) | -0.02364 (72) | 2.2 (3) |
| C(13) | -0.34372 (75) | -0.44932 (70) | 0.15179 (68) | 1.6 (2) |
| C(14) | -0.36669 (86) | -0.45619 (74) | $0 \cdot 24046$ (70) | $2 \cdot 0$ (3) |
| C(15) | -0.40604 (90) | -0.37830 (86) | $0 \cdot 29681$ (61) | 2.5 (3) |
| C(16) | -0.42017 (80) | -0.29630 (77) | 0.27007 (72) | $2 \cdot 3$ (3) |
| C(17) | -0.39633 (91) | -0.28885 (80) | $0 \cdot 18444$ (79) | 2.5 (3) |
| $\mathrm{C}(18)$ | -0.35750 (76) | -0.36527 (72) | 0.12529 (72) | 1.8 (3) |
| C(19) | -0.37153 (79) | -0.65914 (73) | 0.04561 (71) | 1.7 (3) |
| $\mathrm{C}(20)$ | -0.33625 (84) | -0.73981 (77) | -0.01155 (71) | 1.9 (3) |
| C(21) | -0.3975 (10) | -0.82886 (76) | -0.04026 (74) | 2.5 (3) |
| C(22) | -0.4932 (10) | -0.83618 (80) | -0.01119 (81) | $2 \cdot 8$ (3) |
| C(23) | -0.52913 (89) | -0.75828 (82) | 0.04350 (78) | 2.5 (3) |
| C(24) | -0.46930 (82) | -0.66961 (75) | 0.07198 (69) | 1.9 (3) |
| C(2S) | 0.94350 (83) | 0.21624 (81) | 0.53371 (72) | $2 \cdot 1$ (3) |
| C(26) | 1.01407 (95) | 0.21794 (95) | 0.47302 (87) | $3 \cdot 1$ (4) |
| C(27) | $1 \cdot 11891$ (94) | 0.2098 (11) | 0.50448 (82) | $3 \cdot 4$ (4) |
| C(28) | 1.15383 (96) | 0.20293 (95) | 0.59545 (91) | $3 \cdot 0$ (4) |
| C(29) | 1.08526 (95) | 0.20090 (90) | 0.65533 (80) | 2.9 (3) |
| C(30) | 0.97813 (56) | 0.20753 (68) | 0.62522 (67) | $2 \cdot 0$ (3) |
| C(31) | 0.72960 (82) | 0.18170 (76) | 0.56654 (70) | $2 \cdot 1$ (3) |
| C(32) | 0.6714 (12) | 0.09029 (91) | 0.5342 (10) | $3 \cdot 7$ (4) |
| C(33) | 0.6163 (13) | 0.05656 (86) | 0.5934 (11) | 4.5 (5) |
| C(34) | $0 \cdot 6160$ (12) | 0.1132 (11) | 0.68420 (97) | $4 \cdot 1$ (4) |
| C(35) | 0.67382 (99) | 0.20560 (94) | 0.71720 (76) | $2 \cdot 9$ (3) |
| C(36) | 0.72870 (97) | 0.23843 (88) | 0.65914 (81) | 2.6 (3) |
| C(37) | 0.78291 (89) | 0.34780 (71) | 0.49705 (67) | 2.1 (3) |
| C(38) | 0.85486 (98) | 0.40644 (82) | 0.46955 (80) | $2 \cdot 6$ (3) |
| C(39) | 0.8343 (11) | 0.49865 (84) | 0.46572 (88) | $3 \cdot 3$ (4) |
| C(40) | 0.7461 (11) | 0.53320 (88) | 0.49404 (82) | $3 \cdot 1$ (4) |
| C(41) | 0.6722 (11) | 0.47479 (85) | 0.52050 (79) | $3 \cdot 1$ (3) |
| C(42) | 0.6915 (11) | 0.38124 (83) | 0.52030 (82) | $2 \cdot 9$ (3) |
| C(43) | 0.76829 (90) | 0.15491 (81) | 0.36913 (77) | $2 \cdot 4$ (3) |
| C(44) | 0.69845 (89) | $0 \cdot 18535$ (83) | 0.30503 (81) | 2.7 (3) |
| $\mathrm{C}(45)$ | 0.6707 (11) | 0.13335 (98) | $0 \cdot 20918$ (88) | $3 \cdot 4$ (4) |
| C(46) | 0.7173 (10) | 0.0512 (11) | 0.17777 (84) | 4.0 (4) |
| C(47) | 0.7858 (12) | 0.0185 (10) | $0 \cdot 23962$ (90) | $4 \cdot 5$ (4) |
| C(48) | 0.8143 (10) | 0.0701 (10) | $0 \cdot 33623$ (90) | 4.0 (4) |

counting statistics. In the solution and refinement of the structure, procedures standard in this laboratory were employed (Waters \& Ibers, 1977). The structure was solved by Patterson and Fourier techniques and refined by full-matrix least-squares methods. Upon correction for absorption, 11171 reflections were reduced to a set of 10498 unique reflections after averaging ( $R=0.031$ ). An analytical absorption correction was applied; minimum and maximum transmission factors were 0.182 and 0.399 . In the final cycle of full-matrix least-squares refinement on $F^{2}$ all non- H atoms were allowed to vibrate anisotropically,
while phenyl H atoms were idealized $[\mathrm{C}-\mathrm{H}=$ $\left.0.95 \AA ; B_{\mathrm{H}}=B_{\text {eq }}(\mathrm{C})+1 \AA^{2}\right]$. This final cycle involved 10498 reflections and 550 variables. It converged to $R\left(F^{2}\right)$ and $w R\left(F^{2}\right)$ values of 0.075 and $0 \cdot 101$. The value of $R(F)$ for the 7747 reflections having $F_{o}^{2}>$ $3 \sigma\left(F_{o}^{2}\right)$ is $0.047 . \quad w=1 / \sigma^{2}\left(F^{2}\right), \Delta / \sigma_{\text {max }}=0.8$ and $\Delta \rho_{\text {min, max }}=-2 \cdot 9,3 \cdot 0 \mathrm{e} \AA^{-3}$. Scattering factors were taken from International Tables for $X$-ray Crystallography (1974, Vol. IV, Tables 2.2A and 2.3.1). All calculations were performed on a Stellar GS1000 computer with the use of local programs.

Examination of a single crystal of $\left[\mathrm{PPh}_{4}\right]_{4}\left[\mathrm{Sn}_{2}-\right.$ ( $\left.\mathrm{WSe}_{4}\right)_{4}$ ] on an Enraf-Nonius CAD-4 diffractometer led to cell constants in good agreement with those of $\left[\mathrm{PPh}_{4}\right]_{4}\left[\mathrm{~Pb}_{2}\left(\mathrm{WSe}_{4}\right)_{4}\right]$; we conclude that the compounds are isostructural.

Discussion. The final atomic coordinates and equivalent isotropic thermal parameters for the non- H atoms of $\left[\mathrm{PPh}_{4}\right]_{4}\left[\mathrm{~Pb}_{2}\left(\mathrm{WSe}_{4}\right)_{4}\right]$ are given in Table 1.* A sketch of the anion is in Fig. 1. The $\left[\mathrm{Pb}_{2}\left(\mathrm{WSe}_{4}\right)_{4}\right]^{4-}$ anion, which has a crystallographically imposed center of symmetry, consists of two distorted $\mathrm{PbSe}_{6}$ edge-shared octahedra. There are two crystallographically distinct W atoms in this


Fig. 1. A drawing of the $\mathrm{Pb}_{2}\left(\mathrm{WSe}_{4}\right)_{4}^{4-}$ anion showing the labeling scheme and the $50 \%$ probability ellipsoids.

$$
\left[\mathrm{P}\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)_{4}\right]_{4}\left[M_{2}\left(\mathrm{WSe}_{4}\right)_{4}\right](M=\mathrm{Pb}, \mathrm{Sn})
$$

Table 2. Selected bond distances $(\AA)$ and angles $\left({ }^{\circ}\right)$ for $\left.\left[\mathrm{PPh}_{4}\right]_{4}\left[\mathrm{~Pb}_{2} \mathrm{WSe}_{4}\right)_{4}\right]$

| $\mathrm{Pb}-\mathrm{W}(1)$ | 3.679 (1) | $\mathrm{W}(1)-\mathrm{Se}(4)$ | $2 \cdot 352$ (1) |
| :---: | :---: | :---: | :---: |
| $\mathrm{Pb}-\mathrm{W}(2)$ | 3.769 (1) | W(2)-Se(5) | 2.345 (1) |
| $\mathrm{Pb}-\mathrm{W}(2)^{\prime}$ | 3.872 (1) | $\mathrm{W}(2)-\mathrm{Se}(6)$ | $2 \cdot 325$ (1) |
| $\mathrm{Pb}-\mathrm{Se}(3)$ | 2.904 (1) | $\mathrm{W}(2)-\mathrm{Se}(7)$ | 2.324 (1) |
| $\mathrm{Pb}-\mathrm{Se}(4)$ | $2 \cdot 942$ (1) | $\mathrm{W}(2)-\mathrm{Se}(8)$ | 2.283 (1) |
| $\mathrm{Pb}-\mathrm{Se}(5)$ | $3 \cdot 124$ (1) | $\mathrm{P}(1)-\mathrm{C}(1)$ | 1.770 (10) |
| $\mathrm{Pb}-\mathrm{Se}(5)^{\prime}$ | $3 \cdot 185$ (1) | $\mathrm{P}(1)-\mathrm{C}(7)$ | 1.795 (10) |
| $\mathrm{Pb}-\mathrm{Se}(6)$ | $2 \cdot 984$ (1) | $\mathrm{P}(1)-\mathrm{C}(13)$ | 1.794 (10) |
| $\mathrm{Pb}-\mathrm{Se}(7)^{\prime}$ | $3 \cdot 121$ (1) | $\mathrm{P}(1)-\mathrm{C}(19)$ | 1.803 (10) |
| $\mathrm{W}(1)-\mathrm{Se}(1)$ | 2.285 (1) | $\mathrm{P}(2)-\mathrm{C}(25)$ | 1.809 (10) |
| W(1)-Se(2) | 2.298 (1) | $\mathrm{P}(2)-\mathrm{C}(31)$ | 1.785 (11) |
| $\mathrm{W}(1)-\mathrm{Se}(3)$ | $2 \cdot 343$ (1) | $\mathbf{P}(2)-\mathrm{C}(37)$ | 1.813 (10) |
|  |  | $\mathrm{P}(2)-\mathrm{C}(43)$ | 1.794 (11) |
| $\mathrm{Se}(3)-\mathrm{Pb}-\mathrm{Se}(4)$ | 79.23 (3) | $\mathrm{Se}(1)-\mathrm{W}(1)-\mathrm{Se}(4)$ | 110.69 (5) |
| $\mathrm{Se}(3)-\mathrm{Pb}-\mathrm{Se}(5)$ | 169.32 (4) | $\mathrm{Se}(2)-\mathrm{W}(1)-\mathrm{Se}(3)$ | $110 \cdot 33$ (5) |
| $\mathrm{Se}(3)-\mathrm{Pb}-\mathrm{Se}(5)^{\prime}$ | 96.71 (3) | $\mathrm{Se}(2)-\mathrm{W}(1)-\mathrm{Se}(4)$ | 112.41 (5) |
| $\mathrm{Se}(3)-\mathrm{Pb}-\mathrm{Se}(6)$ | 93.40 (3) | $\mathrm{Se}(3)-\mathrm{W}(1)-\mathrm{Se}(4)$ | $105 \cdot 12$ (4) |
| $\mathrm{Se}(3)-\mathrm{Pb}-\mathrm{Se}(7)^{\prime}$ | 98.10 (3) | $\mathrm{Se}(5)-\mathrm{W}(2)-\mathrm{Se}(6)$ | 107.33 (4) |
| $\mathrm{Se}(4)-\mathrm{Pb}-\mathrm{Se}(5)$ | 102.97 (3) | $\mathrm{Se}(5)-\mathrm{W}(2)-\mathrm{Se}(7)$ | 107.76 (4) |
| $\mathrm{Se}(4)-\mathrm{Pb}-\mathrm{Se}(5)^{\prime}$ | 170.90 (3) | $\mathrm{Se}(5)-\mathrm{W}(2)-\mathrm{Se}(8)$ | 111.51 (5) |
| $\mathrm{Se}(4)-\mathrm{Pb}-\mathrm{Se}(6)$ | 96.13 (4) | $\mathrm{Se}(6)-\mathrm{W}(2)-\mathrm{Se}(7)$ | 110.46 (5) |
| $\mathrm{Se}(4)-\mathrm{Pb}-\mathrm{Se}(7)$ | 98.91 (3) | $\mathrm{Se}(6)-\mathrm{W}(2)-\mathrm{Se}(8)$ | 109.75 (5) |
| $\mathrm{Se}(5)-\mathrm{Pb}-\mathrm{Se}(5)^{\prime}$ | 82.54 (3) | $\mathrm{Se}(7)-\mathrm{W}(2)-\mathrm{Se}(8)$ | 109.98 (4) |
| $\mathrm{Se}(5)-\mathrm{Pb}-\mathrm{Se}(6)$ | 76.01 (3) | $\mathrm{W}(1)-\mathrm{Se}(3)-\mathrm{Pb}$ | 88.36 (4) |
| $\mathrm{Se}(5)^{\prime}-\mathrm{Pb}-\mathrm{Se}(6)$ | $92 \cdot 22$ (3) | $\mathrm{W}(1)-\mathrm{Se}(4)-\mathrm{Pb}$ | 87.29 (4) |
| $\mathrm{Se}(5)-\mathrm{Pb}-\mathrm{Se}(7)$ | 91.92 (3) | $\mathrm{W}(2)-\mathrm{Se}(5)-\mathrm{Pb}$ | 85.89 (3) |
| $\mathrm{Se}(5)^{\prime}-\mathrm{Pb}-\mathrm{Se}(7)$ | 73.46 (3) | $\mathrm{W}(2)-\mathrm{Se}(5)-\mathrm{Pb}^{\prime}$ | 87.51 (4) |
| $\mathrm{Se}(6)-\mathrm{Pb}-\mathrm{Se}(7)$ | 162.53 (4) | $\mathrm{W}(2)-\mathrm{Se}(6)-\mathrm{Pb}$ | 89.55 (4) |
| $\mathrm{Se}(1)-\mathrm{W}(1)-\mathrm{Se}(2)$ | 108.65 (5) | $\mathrm{W}(2)-\mathrm{Se}(7)-\mathrm{Pb}^{\prime}$ | 89.43 (4) |
| $\mathrm{Se}(1)-\mathrm{W}(1)-\mathrm{Se}(3)$ | 109.59 (5) | $\mathrm{Pb}-\mathrm{Se}(5)-\mathrm{Pb}^{\prime}$ | 97.46 (3) |

structure. Each is tetrahedrally coordinated by four Se atoms. One $\mathrm{WSe}_{4}$ tetrahedron is edge shared to a $\mathrm{PbSe}_{6}$ octahedron while the other contributes the Se vertices that are edge shared between $\mathrm{PbSe}_{6}$ octahedra. The distances (Table 2) from Pb to the doubly bridging Se are 2.904 (1) to $3 \cdot 121$ (1) $\AA$, shorter than those to the triply bridging Se atoms 3•124(1)-
$3 \cdot 185(1) \AA$. The angles around Pb vary from 73.46 (3) to $170.90(3)^{\circ}$; the distortion in part probably arises from the lone-pair electrons on the $\mathrm{Pb}^{2+}$ center. The $\mathrm{Se}-\mathrm{W}(1)-\mathrm{Se}$ angles range from $105 \cdot 12(4)$ to $112.41(5)^{\circ}$, showing slightly wider variation than the $\mathrm{Se}-\mathrm{W}(2)-\mathrm{Se}$ angles $[107.33$ (4) to $\left.111.51(5)^{\circ}\right]$. The distances from $\mathbf{W}(2)$ atoms to the triply bridging $\mathrm{Se}(5)$ atoms [ 2.345 (1) $\AA$ ] are slightly longer than those to the doubly bridging $\mathrm{Se}(6)$ [ $2.325(1) \AA$ ] or $\operatorname{Se}(7)[2.324$ (1) $\AA$ ] atoms. The terminal W-Se distances of 2.283 (1)-2.289 (1) $\AA$ are comparable with those of 2.281 (1)-2.292 (1) $\AA$ in the $\mathrm{W}_{2} \mathrm{Se}_{6}^{2-}$ (Lu, Ansari \& Ibers, 1989) and 2.281 (1)$2 \cdot 288$ (1) $\AA$ in the $\mathrm{NiWSe}_{6}^{2-}$ anions (Ansari, Chau, Mahler \& Ibers, 1989).

This research was supported by the US National Science Foundation Grant No. CHE 89-22754.

## References

Ansari, M. A., Chau, C.-N., Mahler, C. H. \& Ibers, J. A. (1989). Inorg. Chem. 28, 650-654.

Ansari, M. A. \& Ibers, J. A. (1990). Coord. Chem. Rev. 100, 223-266.
Lu, Y.-J., Ansari, M. A. \& Ibers, J. A. (1989). Inorg. Chem. 28, 4049-4050.
Müller, A., Diemann, E., Jostes, R. \& Bögge, H. (1981). Angew. Chem. Int. Ed. Engl. 20, 934-955.
Müller, A., Paulat-Böschen, I., Krebs, B. \& Dornfield, H. (1976). Angew. Chem. Int. Ed. Engl. 15, 633.

Wardle, R. W. M., Mahler, C. H., Chau, C. N. A. \& Ibers, J. A. (1988). Inorg. Chem. 27, 2790-2795.

Waters, J. M. \& Ibers, J. A. (1977). Inorg. Chem. 16, 3273-3277.

Acta Cryst. (1991). C47, 1602-1604

# Structure of Dichloro[1-(4-methoxyphenyl)iminomethyl-2-naphtholato]diphenyltin(IV) 

By Hoong-Kun Fun<br>School of Physics, Universiti Sains Malaysia, 11800 Penang, Malaysia<br>Soon-Beng Teo, Slang-Guan Teoh* and Guan-Yeow Yeap<br>School of Chemical Sciences, Universiti Sains Malaysia, 11800 Penang, Malaysia<br>and Teong-San Yeoh<br>School of Physics, Universiti Sains Malaysia, 11800 Penang, Malaysia

(Received 8 September 1989; accepted 18 January 1991)

Abstract. $\left[\mathrm{SnCl}_{2}\left(\mathrm{C}_{18} \mathrm{H}_{15} \mathrm{NO}_{2}\right)_{2}\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)_{2}\right], \mathrm{C}_{48} \mathrm{H}_{40} \mathrm{Cl}_{2} \mathrm{~N}_{2}-$
$\mathrm{O}_{4} \mathrm{Sn}, M_{r}=898 \cdot 46$, triclinic, $P \overline{1}, a=10 \cdot 291(1), b=$

[^0]0108-2701/91/081602-03\$03.00
12.332 (1), $\quad c=8.895$ (1) $\AA, \quad \alpha=70.62$ (1), $\quad \beta=$ 80.30 (1), $\gamma=72 \cdot 62$ (1) ${ }^{\circ}, V=1013$ (1) $\AA^{3}, Z=1, D_{m}$ $=1.451$ (flotation), $D_{x}=1.473 \mathrm{Mg} \mathrm{m}^{-3}, \lambda(\mathrm{Mo} K \alpha)$ $=0.71069 \AA, \mu=0.728 \mathrm{~mm}^{-1}, \quad F(000)=458, T=$


[^0]:    * Author to whom correspondence should be addressed.

